The generator matrix 1 0 1 1 1 X^2+X+2 1 1 0 1 1 X^2+X+2 1 X^2+2 1 1 1 X 1 1 1 1 1 X^2+2 1 2 X^2+X 1 X^2+X+2 0 1 1 1 X 1 1 X^2+2 1 X 2 X 1 1 1 1 X^2+X+2 X^2 1 X+2 2 1 0 1 X+1 X^2+X+2 X^2+1 1 X+3 0 1 3 X^2+X+2 1 X^2+2 1 X+1 X^2+X X^2+3 1 2 X^2+2 X^2+X+3 X^2+3 X+2 1 X^2+X+1 1 1 3 1 1 X+2 1 X^2+X+1 1 X^2 X 1 X^2+X+1 1 1 X^2+X X+2 2 X 2 1 1 X^2+2 1 1 0 0 0 X^2 0 0 2 0 X^2 X^2+2 X^2+2 X^2 X^2+2 X^2+2 2 X^2+2 0 0 X^2 2 X^2 2 X^2+2 X^2+2 X^2 X^2+2 2 X^2+2 2 0 X^2+2 X^2+2 2 X^2 0 0 2 0 2 X^2 0 X^2+2 X^2 X^2+2 X^2 X^2+2 X^2+2 X^2 0 2 X^2 0 0 0 0 X^2+2 2 X^2 X^2 X^2+2 X^2+2 X^2 2 2 X^2+2 0 X^2 0 X^2 2 X^2+2 2 2 0 X^2+2 X^2 0 X^2+2 X^2+2 0 0 0 2 X^2 X^2+2 X^2+2 X^2 2 X^2+2 X^2+2 X^2+2 X^2 0 X^2 0 2 X^2 0 2 X^2+2 2 0 2 generates a code of length 51 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 46. Homogenous weight enumerator: w(x)=1x^0+34x^46+176x^47+443x^48+626x^49+561x^50+488x^51+558x^52+580x^53+399x^54+152x^55+29x^56+18x^57+14x^58+8x^61+7x^62+1x^64+1x^74 The gray image is a code over GF(2) with n=408, k=12 and d=184. This code was found by Heurico 1.16 in 0.234 seconds.